Heterotrophic Compensation: A Possible Mechanism for Resilience of Coral Reefs to Global Warming or a Sign of Prolonged Stress?
نویسندگان
چکیده
Thermally induced bleaching has caused a global decline in corals and the frequency of such bleaching events will increase. Thermal bleaching severely disrupts the trophic behaviour of the coral holobiont, reducing the photosynthetically derived energy available to the coral host. In the short term this reduction in energy transfer from endosymbiotic algae results in an energy deficit for the coral host. If the bleaching event is short-lived then the coral may survive this energy deficit by depleting its lipid reserves, or by increasing heterotrophic energy acquisition. We show for the first time that the coral animal is capable of increasing the amount of heterotrophic carbon incorporated into its tissues for almost a year following bleaching. This prolonged heterotrophic compensation could be a sign of resilience or prolonged stress. If the heterotrophic compensation is in fact an acclimatization response, then this physiological response could act as a buffer from future bleaching by providing sufficient heterotrophic energy to compensate for photoautotrophic energy losses during bleaching, and potentially minimizing the effect of subsequent elevated temperature stresses. However, if the elevated incorporation of zooplankton is a sign that the effects of bleaching continue to be stressful on the holobiont, even after 11 months of recovery, then this physiological response would indicate that complete coral recovery requires more than 11 months to achieve. If coral bleaching becomes an annual global phenomenon by mid-century, then present temporal refugia will not be sufficient to allow coral colonies to recover between bleaching events and coral reefs will become increasingly less resilient to future climate change. If, however, increasing their sequestration of zooplankton-derived nutrition into their tissues over prolonged periods of time is a compensating mechanism, the impacts of annual bleaching may be reduced. Thus, some coral species may be better equipped to face repeated bleaching stress than previously thought.
منابع مشابه
Effect of sea surface temperature (SST) changes on coral ecosystems in Kish Island
Background and Theoretical Foundations: Coral reefs are one of the world's most attractive ecosystems. They have been covering large parts of the world in the tropic areas. Coral reefs in the Iranian waters of the Persian Gulf are largely limited to the Islands. Many factors, including natural and anthropogenic activities cause stress to the reef communities affecting reef development. Coral bl...
متن کاملOcean acidification and warming will lower coral reef resilience
Ocean warming and acidification from increasing levels of atmospheric CO2 represent major global threats to coral reefs, and are in many regions exacerbated by local-scale disturbances such as overfishing and nutrient enrichment. Our understanding of global threats and local-scale disturbances on reefs is growing, but their relative contribution to reef resilience and vulnerability in the futur...
متن کاملOperationalizing resilience for adaptive coral reef management under global environmental change
Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ec...
متن کاملThe susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both?
Coral reefs are threatened with worldwide decline from multiple factors, chief among them climate change (Hughes et al. 2003; Hoegh-Guldberg et al. 2007). The foundation of coral reefs is an endosymbiosis between coral hosts and their resident photosynthetic dinoflagellates (genus Symbiodinium) and this partnership (or holobiont) is exquisitely sensitive to temperature stress. The primary respo...
متن کاملConservation Planning for Coral Reefs Accounting for Climate Warming Disturbances
Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985-2009) and projected (2010-2099) time-series. We derived indices of...
متن کامل